989 resultados para mesoprous bioactive glasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gel-derived CaO-SiO2 binary glasses of CaO mole fractions 0. 2, 0.3 and 0. 4 have been prepared and characterised. Pore diameter specific pore volume, skeletal density and porosity were found to increase with increasing CaO-content, whereas a concomitant decrease in specific surface area was observed. Si-29 NMR indicated that the 0.2 CaO mole fraction glass consisted of higly polymerized Q(4) and Q(3) silicate species, with some Q(2) units. With increasing CaO mole fraction, these silicate species became progressively depolymerised such that isolated SiO4 tetrahedra were detected within the 0.4 CaO glass matrix. Unusually, the glasses retained a proportion of Q(4) and Q(3) species as the CaO mole fraction was increased. All glass formulations exhibited in vitro bioactivity. The rate of hydroxyapatite precipitation followed the order 0.2 CaO > 0.4 CaO > > 0.3 CaO, an effect that is attributed to differences in the rate of dissolution of calcium from these glasses. This, in turn, appears to be dependent upon the proportion of Ca 21 participating in the formation of the glassy network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: the purpose of the present study was to evaluate the histologic results of bone cavities that were surgically created in the mandibles of Cebus apella monkeys and filled with autogenous bone, PerioGlas, FillerBone, or Bone Source. Materials and Methods: Surgical cavities 5 mm in diameter were prepared through both mandibular cortices in the mandibular angle region. The cavities were randomly filled, and the animals were divided into groups according to the material employed: Group 1 cavities were filled with autogenous corticocancellous bone; group 2 cavities were filled with calcium phosphate cement (BoneSource); and group 3 and group 4 cavities were filled with bioactive glass (FillerBone and PerioGlas, respectively). After 180 days the animals were sacrificed, and specimens were prepared following routine laboratory procedures for hematoxylin/eosin staining and histologic evaluation. Results: the histologic analysis showed that autogenous bone allowed total repair of the bone defects; bioactive glasses (FillerBone and PerioGlas) allowed total repair of the defects with intimate contact of the remaining granules and newly formed bone; and the cavities filled with calcium phosphate cement (BoneSource) were generally filled by connective fibrous tissue, and the material was almost totally resorbed. Discussion: the autogenous bone, FillerBone, and PerioGlas provided results similar to those in the current literature, showing that autogenous bone is the best Choice for filling critical-size defects. Synthetic implanted materials demonstrated biocompatibility, but the bioglasses demonstrated osteoconductive activity that did not occur with calcium phosphate (BoneSource). Conclusion: According to the methodology used in this study, it can be concluded that the utilization of autogenous bone and bioactive glasses permitted the repair of surgically created critical-size defects by newly formed bone; the synthetic implanted materials demonstrated biocompatibility, and the bioactive glasses demonstrated osteoconductive activity. The PerioGlas was mostly resorbed and replaced by bone and the remaining granules were in close contact with bone; the FillerBone showed many granules in contact with the newly formed bone; BoneSource did not permit repair of the critical-size defects, and the defects were generally filled by connective fibrous tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol-gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore - composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol-gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordered mesoporous bioactive glasses (MBGs) with different compositions were prepared by using nonionic block copolymer surfactants as structure-directing agents through an evaporation-induced self-assembly process. Their in-vitro bioactivities were studied in detail by electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma (ICP) atomic emission spectroscopy. The ICP element analysis results were further calculated in terms of the total consumption of Ca and P, Delta[Ca]/Delta[P] ratios, and ionic activity product (IP) of hydroxyapatite. Through the above analysis, it is clear that MBGs show a different structure-bioactivity correlation compared to conventional sol-gel-derivcd BGs. The in vitro bioactivity of MBGs is dependent on the Si/Ca ratio in the network when the other material parameters such as the mesostructure and texture properties (pore size, pore volume) are controlled. MBG 80S15C with relatively lower calcium content exhibits the best in vitro bioactivity, in contrast to conventional sol-gel-derived BGs where usually higher calcium percentage BGs (e.g. 60S35C) show better bioactivity. Calcination temperature is another important factor that influences the in vitro bioactivity. According to our results, MBGs calcined at 973 K may possess the best in vitro bioactivity. The influences of the composition and calcination temperature upon bioactivity are explained in terms of the unique structures of MBGs. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO, 30 mol % CaO) for each of the calcium precursors. When CaCl was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel and cobalt are both known to stimulate the hypoxia-inducible factor-1 (HIF-1a), thus significantly improving blood vessel formation in tissue engineering applications. We have manufactured nickel and cobalt doped bioactive glasses to act as a controlled delivery mechanism of these ions. The resultant structural consequences have been investigated using the methods of isotopic and isomorphic substitution applied to neutron diffraction. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design. Results show that nickel and cobalt adopt a mixed structural role within these bioactive glasses occupying both network-forming (tetrahedral) and network-modifying (5-fold) geometries. Two thirds of the Ni (or Co) occupies a five-fold geometry with the remaining third in a tetrahedral environment. A direct comparison of the primary structural correlations (e.g. Si-O, Ca-O, Na-O and O-Si-O) between the archetypal 45S5 Bioglass® and the Ni and Co glasses studied here reveal no significant differences. This indicates that the addition of Ni (or Co) will have no adverse effects on the existing structure, and thus on in vitro/in vivo dissolution rates and therefore bioactivity of these glasses.